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We develop the thermodynamic formalism for a large class of maps of the inter- 
val with indifferent fixed points. For such systems the formalism yields one- 
dimensional systems with many-body infinite-range interactions for which the 
thermodynamics is well defined but Gibbs states are not. (Piecewise linear 
systems of this kind yield the soluble, in a sense, Fisher models.) We prove that 
such systems exhibit phase transitions, the order of which depends on the 
behavior at the indifferent fixed points. We obtain the critical exponent 
describing the singularity of the pressure and analyze the decay of correla- 
tions of the, equilibrium states at all temperatures. Our technique relies on 
establishing and exploiting a relation between the transfer operators of the 
original map and its suitable (expanding) induced version. The technique allows 
one also to obtain a version of the Bowen Ruelle formula for the Hausdorff 
dimension of repellers for maps with indifferent fixed points, and to generalize 
Fisher results to some nonsoluble models. 

KEY WORDS:  Nonhyperbolic maps; thermodynamic formalism; phase 
transitions; transfer operators; inducing. 

T h e  t h e r m o d y n a m i c  f o r m a l i s m  (25'2s) p r o v e d  to be a power fu l  t oo l  in 

the  e r g o d i c  t h e o r y  of  h y p e r b o l i c  and ,  in pa r t i cu la r ,  e x p a n d i n g  m a p s J  26) 

A cen t ra l  ro le  is here  p l a y e d  by  the  t ransfer  (or  R u e l l e - P e r r o n - F r o b e n i u s )  

o p e r a t o r .  T h e  fact  tha t  the  m a p  is e x p a n d i n g  a l lows  one  to express  t h e r m o -  

d y n a m i c  a n d  s ta t i s t ica l  charac te r i s t i c s  of  the  sys tem (free energy,  equ i -  

l i b r i um states,. . .) in t e rms  of  the  t ransfer  o p e r a t o r ,  a n d  resul ts  in r egu la r i ty  
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properties of both. In particular, one obtains a statistical mechanics system 
with a fast-decaying interaction and, correspondingly, a transfer operator 
with compactness properties, which allows for quite a complete analysis 
of such systems. As a consequence, one has fast convergence to the 
thermodynamic limit and smoothness of thermodynamic functions (no 
phase transitions). 

These regularity properties disappear when one passes to nonhyper- 
bolic maps, as has been demonstrated convincingly in recent works, mostly 
by theoretical physicists. Numerical analysis and calculations in some 
soluble models exhibit both singularities and slow convergence to the 
thermodynamic limit. ~8"9'13) Some insights have been gained into the origin 
of the singularities, in particular by relating the phase transitions to that of 
Fisher models(2~ see the closing remarks here. We note, however, 
that in natural approximations of the systems by Fisher models the dis- 
carded parts of the interactions are not small in any obvious sense, having, 
in particular, infinite "energy norm." 

On the other hand, in a number of mathematical works, the method 
of inducing, and its variants, has been used to investigate absolutely con- 
tinuous invariant measures for nonhyperbolic maps of the interval. (1'5'~8'23) 

Apart from a remark of Walters (3~ on a relation between pressures of 
a soluble system and its induced version, we are aware of no work relating 
thermodynamics and transfer operators of a system and its induced version. 
The aim of this paper is to establish such a relation and to show that it 
yields quite a complete version of the thermodynamic formalism for almost 
expanding maps (defined below), with a good insight into the nature of 
singularities in such systems; this relation can be considered as a version of 
the renormalization group idea. The same inducing method allows us to 
obtain results on singularities in the spectrum of the transfer operator for 
some unimodal maps, confirming, in particular, results and conjectures 
of refs. 4 and 20. However, in the unimodal case the thermodynamic 
significance of the results is yet to be clarified. 

To simplify the exposition, we restrict our attention to almost expanding 
maps of the interval I = [0, 1 ], which are defined below. Later, we indicate 
what changes have to be made to treat more general almost expanding 
maps and some other nonhyperbolic systems. 

We consider a piecewise monotone transformation f of the interval 
I =  [0, 1]; there exists a finite partition of I into intervals Io, I~ ..... Ix, such 
that for each interval I i, f extends to a function f~ on its closure [i with 
H61der-continuous derivative f / .  We denote by F~ the map inverse to fi- 

f is almost expanding if I f ' l  is larger than 1 in the interior of each Ii 
(it may be equal to 1 at the endpoints of the intervals). 

In order to keep the formulas simple, we restrict ourselves to a parti- 
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tion into two intervals Io = [0, a [  and 11 = [a, 1] and we suppose that fo 
and f l  are on to / .  Furthermore,  we now assume that f has an indifferent 
fixed point at 0, and that I f ' ]  is larger than some 2 o > 1  on f ~(I1). 
A typical f in this class is the Farey map, (~1) where a =  1/2, fo=x/(1 - x ) ,  
and f l  = ( 1 - x)/x (see Fig. 1 ). 

For real/7, the transfer operator 5s n associated with the transformation 
f is defined by 

y ~ ( x ) =  ~ 'P(Y) (1) 
y:sv=x t f'(Y)l ~ 

with the natural convention at the endpoints of the interval. 5~ acts on 
suitable Banach spaces of functions on L (25) 

If f is expanding, then there exists a unique equilibrium state, which 
is also a Gibbs state, and the pressure P ( / ~ l o g i f ' l )  is analytic in /7. 
Moreover,  the pressure is given by the logarithm of the largest eigenvalue 
of ~ in the space of continuous functions o n  /(31) or in the space of func- 
tions with bounded variation o n  L (3) For some nonexpanding transforma- 
tions f inducing will be used to obtain an expanding induced system, and 
results in the induced system will be related to the original one. This allows 
us to prove below the existence of phase transitions for almost expanding 
maps with indifferent fixed points, and analyze corresponding singularities 
of thermodynamic functions and clustering properties of equilibrium states. 

~(x) 

0 
0 1 

g(x) 

Fig. 1. The Farey map f with the induced map g in the upper right corner. Jo and fl are 
the branches of f on i 0 and/'1. The dashed lines show the extension of branches of the 
induced map to the whole interval. 
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For a partition into two intervals, the transfer operator 5('~ reads 

5r where ~ = ] F / l ~ q S o r i = s f ~ ( X i q ~ )  (2) 

and Zi is the characteristic function of L, i = 0, 1. 
To define an appropriate induced transformation, (6~ let J be a subinter- 

val of I, and let J. be the set of points which return to J after exactly n 
iterations, 

J , = { x e J l f x e J , . . . , f "  l x ~ J , f " ~ J }  (3) 

Defining n(x) = n for x E J , ,  the first return or induced map g is defined by 

gx = f"(X~x (4) 

For an almost expanding map of the interval, the induced transforma- 
tion is defined up to a countable set of points. In our case, only the point 
x = 1 does not return to J. ,' 

Furthermore, define the modified (by the parameter z) transfer 
operator Jg~z for the induced map, 

Z n ( Y )  

~ ' ~ ( x ) =  ~ Ig'(y)l a gt(y) (5) 
y: gy  = x 

Now induce on J =  I1. Then the sets J, are the intervals 

J = F i F  ~ l(j) (6) 

and g maps each J, monotonically onto J. Denoting by G,: J--* J, the 
inverse of g lj., w e  have 

G,=F1Fg -1 ]g (7) 

Figure 1 illustrates the inducing for the Farey map. The induced map 
is shown in the upper right corner. 

Due to our assumptions, g is expanding, i.e., 

sup sup IG'.(x)l < 1 (8) 
n>~l  x e J  

The modified transfer operator J/g~z takes the form 

~ z 7 " =  ~ z" IG'nl ~ 7'oG. 
n = l  

(9) 
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which for the Farey system is 

_ ~ z ~ ( +(n-1)x' ]  
~ z ~ T ( x ) - =  l ( l + n x )  ~ T  1 ( + n x  / (m) 

We note that because of the bound (8) the series in (9) is pointwise 
convergent for any bounded T and for Izl < 1. 

We now reinterpret the last expression for Jr as follows. By (7), 
FIF ~- ~ extends G~ to all of L Moreover, F~, and therefore also F~Fg 1, 
maps I into J. Hence, defining for T, fl, and z as in (9), 

- ~ L ~  = ~ z n](FIFg ~)']~ 7toF1Fg -1 (11) 
n = l  

we obtain that .//g~+ T extends J/{~zT to L Moreover, the action of the 
operator Jg~+ is also well defined for functions on/ .  

To relate ~ and ~/~z, we note that 

~r 1c4o o~ ~1/~ ~= I(f l fg 1),]fl ToF1F~-~ (12) 

Here the operator product is defined on functions on /, but also holds 
when restricted to functions on J. By (7) and (12), 

~iz ~u= ~ ~"~- '~1~  (13) 
n = l  

which is equal to (1-ZS#o~) -~ z2,~ for Izl smaller than the radius of 
convergence of this power series. This radius is equal to r(~o~), the spectral 
radius of ~o~. In our case, r(LPo~)= 1, due to the fact that f is almost 
expanding and that i f ( 0 ) =  1. Because IG'~(0)I = 1, Jg~+~ T is in general 
unbounded for z = 1, exhibiting a singularity at zero. 

Now, (13) yields the desired operator relations between 5~ and J/r 
For any function ~ on I 

and, for any function T on J, one has 

(14) 

(15) 

We now discuss how in suitable Banach spaces of functions these 
identities relate the spectrum of Y~ outside the disk of radius r(~o~) to the 
spectrum of d//~; the spectrum of ~r inside this disk is considered later. 

Let (b be an eigenfunction of 2~4'~ with eigenvalue z - 1 >~ 1. Then q5 is an 
eigenfunction of  Jg~z with eigenvalue 1, and hence, the restriction T of 
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to J is an eigenfunction of J/dzz with eigenvalue 1. Also, if z-~ is in the 
resolvent set of ~z, then 1 is in the resolvent set of ~z+ and, hence, of.y/gz~. 

Now, let T be an eigenfunction of J/l& with eigenvalue 1. Then the 
extension q~ = J/g~ T of T to I is an eigenfunction of ~ with eigenvalue 
z 1, provided that the extension cp is in the domain of 5r Also, if 1 is in 
the resolvent set of ~Zz then z-~ is in the resolvent set of 5~ 

The operator //gZz is well defined for z e ]0, 1 ] and fl > 1/2, and has 
the following positivity and monotonicity properties. For bounded 
r T we write ~b~< T if ~P(x) ~< T(x) for any x e J .  Then for any T~>0 

and 

dg~z ~u>~ 0 (16) 

:z z p zB,z Z 
/d~z T ~< ~ J//t~, z (17) 

for fl >~ fi' and z ~< z'; here 20 is the lhs of the inequality (8). 
We will discuss now the spectral properties of Jd'~z and the existence 

of phase transitions in the particularly simple case of a piecewise analytic 
f ;  following refs. 24 and 22, we let the operators act on the Banach space 
of functions analytic in a suitable (complex) neighborhood of J. The 
induced map g is expanding, and therefore J//~z maps functions, analytic 
in a neighborhood of J into functions that are analytic in a larger 
neighborhood. Due to this property, dg~z is a compact (in fact trace-class) 
operator. 

Now consider 1 ~> z > 0. Then the operator ~ z  is not only positive but 
also 1-bounded, i.e., for a nonzero T~> 0 there exist n, ~1, and ~2 such that 

~ 1 < ( ~ z ) "  ~ < ~ 2 1  (18) 

(the upper bound is trivial). Thus, there exists a unique (up to a factor) 
positive eigenvector T~z of dlez, the corresponding eigenvalue )~max(d/t~z) is 
simple, and all other eigenvalues are strictly smaller in modulus. (21,22) This 
yields also a spectral gap for ~/~z. 

Denoting by A the Lebesque measure, one has 

A(dgl. 1 ~ ) = A ( T )  (19) 

for any ~u; this is standard in the theory of the transfer operator. Combin- 
ing this with the inequalities (17) and the fact that, obviously, 
2max(~{#z)--} 0 as z--+0, one obtains that for any f l<  1 there is unique 
z(fl) < 1 such that 

,~max(~[/?z(fl)) = 1 ( 2 0 )  
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and that  z ( f l )  is a strictly increasing function of fl with z ( f l )  7 1 as fi /7 1. 
Moreover ,  by s tandard  per tu rba t ion  theory of simple eigenvalues (ref. 19, 
Chap te r  VII ,  Theo rem 1.9), fl~---, z ( f l ) i s  analytic. 

Since, as we show below, 3 P ( f l ) =  - l o g  z ( f i )  for fi < 1, this a rgument  
accounts  for the graph  of Fig. 2 on the interval [0, 1 ]. Fur thermore ,  since 
P ( f i )  >~ 0 and P ( f l )  is a decreasing function of fl, P ( f i )  = 0 for fl >~ 1, and 
therefore fl = 1 is a point  of a phase transition. 

To  identify P(fl) with - l o g z ( f l )  for f ie  [0, 1], we note first that,  by 
(18), 

inf ~u~(~)(x) > 0 
x ~ J  

+ is a strictly positive cont inuous function on L Therefore  q~ := JC/~z~) ~z(~)  
which by (15) is an eigenfunction of ~ with eigenvalue 1/z(fi). Moreover ,  
applying Theo rem 2.1 of ref. 30 to the normal ized  version f f  of ~3,  

205(x) : (&(05e,p))(x) 

we obta in  that  

P(3)  = - l o g z ( 3 )  (21) 

This concludes our  analysis of the piecewise analytic case. 

3 Here and in what follows we write P(fl) in place of P(fl log If'l). 

4 

I 

. . . .  i . . . .  I . . . .  I . . . .  I . . . .  I . . . .  
- - 0 . 5  0 0.5 1 1.5 

. . . .  I . . . .  I . . . .  I . . . .  
I 

2 

Fig. 2. The fi dependence of the largest eigenvalue 2 of the transfer operator. 
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We turn now to the more general case of maps f for which f '  is 
merely H61der continuous, and indicate how inducing and the recent 
results of refs. 3 and 27 yield additional information on the spectrum of 5~ 
and the clustering properties of equilibrium states. 

We let the operators 5r B and ~g~= act on the Banach spaces BV(I) and 
BV(J) of functions of bounded variation on the intervals I and J, respec- 
tively. Then, using the fact that g is expanding, we obtain that for z s ]0, 1 [ 
and fl < 1 the spectrum of J/~= is as indicated on Fig. 3a: J/g~= is quasicom- 
pact, its spectral radius is a simple eigenvalue ).max(~(~z) with a positive 
H61der continuous eigenfunction T~=, the essential spectral radius of Jle=, 
re~s(Jgp=), is strictly smaller than ~max(d/~flz), and the rest of the spectrum of 
Jlgn= consists of isolated eigenvalues of a finite multiplicity of modulus 
strictly smaller than 2max(~Z/Tz). Furthermore, using the inequalities (17), 
one shows as before that there is a unique solution z(fl) to (20), and that 
z(fl) has the monotonicity and analyticity properties stated after (20). 

Using now (14) and (15), we show that 5fn acting on BV(I) is also 
quasicompact, that re==(5~)= 1, that z(fl) -1 is a simple eigenvalue of Lf~, 
equal to its spectral radius, with the corresponding eigenfunction 
~+(~/T~z(r strictly positive and H61der-continuous, and that, as in the 
case of J/L~=, the rest of the spectrum of Lf~ consists of isolated eigenvalues 
of a finite multiplicity of modulus strictly smaller than z(fl) ~ (Fig. 3b). In 
particular, we obtain that 5~ has a spectral gap whenever fl < 1, and since 
z(fi) /~ 1 as fl / '  1, this spectral gap goes to zero as fl z 1. Also, since P(fl) 
is equal to the spectral radius of Lf~ in general, (3) we obtain again that (21) 
holds, extending to the present context results welt known for expanding 
maps. 

We discuss now the behavior at the critical point z = 1. This depends 

\ 
\ 

Isolated Eigenvalues  

~ / \  r~ 

y ' \ / ( p e c t r a l  Gap 

t I 

/ 

(a) S p e c t r u m  of MCz(# ) 

]soIaLed 
/ ~ ~ ~ " ~ ~ ~ Eigenvalues 

/ \ 

/ /  / \ \  Gop 

(b) S p e c t r u m  of LO 

Fig. 3. The structure and the connection between the spectra of (a) the modified transfer 
operator ~'Bz(r and (b) the transfer operator ~ ,  for fl < I. 
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on the asympto t ic  form of f near  the indifferent fixed point  0. Assume a 
power  law in the form 

f (x )  = x + cxe[1 + r (x ) ]  (22) 

with exponent  2 >  1, some constant  c > 0, with r(x)= O(x ~) as x ~ 0, for 
some e > 0, and with r'(x) m o n o t o n e  in a ne ighborhood  of 0 (for instance, 
r '  analytic at 0). 

Then we have the asympto t ic  expression 

F~)(x) = gn(x)[1  + O(gn(x) ) ~] 

uniformly in n for x - - ,  0, where 

g(x)=(x-(e  1)+a)-l/(z 1) 

is the fixed point  of the renormal iza t ion  t ransformat ion  

T~g(x)=o~g2(x/oO, c~=21/(z 1~ 

for the intermit tency bounda ry  condit ion (17) 

g ( 0 )  = 0, g ' ( 0 )  = 1 

(The exponent  2 must  not  be confused with the pa rame te r  z - - 2 - 1  used 
earlier.) 

F r o m  this we obtain  the asympto t ic  expansion near  the phase tran- 
sition point: 

The system exhibits a first-order phase transi t ion for 1 < 5 < 2: 

(23) P(fl) = cons t -  (1 - fl) + o(1 - fi) 

2. Fo r  s  2, the case of the Farey  map,  

- P(/~) log P(fl) = cons t .  (1 - / ~ )  + o(1 - fl) (24) 

3. Fo r  2 > 2  

P(fi) = const  - (1 - f l)e-1 + o((1 - fl)z 1) (25) 

Our  results agree with those of  refs. 11, 29, and 32. 
We turn now to the statistical mechanics  of  the system, i.e., to a 

descript ion of its equil ibrium states. (25) We again  use inducing in combina-  
t ion with the var ia t ional  principle and s tandard  results of the thermo-  

822/66/1-2~33 
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dynamic formalism. (25'3~ We obtain among other results the description of 
equilibrium states and their clustering properties: 

For  fl < 1 there is a unique equilibrium state. Though not a Gibbs 
state, this state has exponential decay of correlations, with the correlation 
length diverging as fl approaches 1. For  fl > 1 there is again a unique, and 
fi-independent, equilibrium state 6o concentrated at the point {0}. 

The situation at fl = 1 and the order of the phase transition depend on 
the exponent 2: 

1. For  ~ < 2  one has two extremal equilibrium states, one, p, 
obtained as a limit as fi /~ 1 of the unique equilibrium states; the other is 
the 6 0 mentioned above. We also obtain that although the phase transition 
is of a first order, p has polynomially decaying correlations. 

2. For  Z~> 2 one has unique equilibrium state, namely 6o. The order 
of the phase transition is as described above. By the general thermo- 
dynamic formalism, the limit as fi ,7 1 of the unique equilibrium state is 
equal to 6o. 

In addition, there is a unique, up to a factor, invariant measure which 
is absolutely continuous with respect to the Lebesque measure; however, 
unlike in the case of Z < 2, this measure is infinite. 

We mention now further extensions of the formalism and some results 
it yields. Some of these will be treated in a longer paper in preparation. 

1. One can define the modified transfer operator (5) in a much more 
general setting, when I and J are not necessarily intervals, or subsets of the 
real line. Abusing somewhat the notation. J//~z can be written in terms of 
L,e~ and the sets Jn of (3): 

n - - 1  

where ZJn is the characteristic function of Jn. Defining 

Y o ~  = ~~ q5 ) and L,r ~ = 2#~(Zj~) 

we again obtain that d//~+z given by (13) extends J/~z and that the relations 
(14) and (15) hold. 

2. The present results extend, almost verbatim, to a situation when f 
has more than two branches; a slight variation of the formalism works for 
periodic indifferent points. 

3. Most of the results depend on the expanding nature of the induced 
map g, not o f f .  
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4. A natural modification of the formalism extends it to the case of 
one-dimensional repellers, or, "cookie cutters, ''(4) with indifferent fixed 
points. In particular, one obtains a version of the Bowen Ruelle formula, 
which now says that the Hausdorff  dimension of the corresponding Julia 
set is given by/~ at which the phase transition occurs. (In the situation of 
the present paper this tier is 1, corresponding to the fact that the Julia set 
of consists of all the interval.) When these results were described at semi- 
nars at IHES and the Tel Aviv University, we were informed by E. Cowley 
and Jon Aaronson about  similar results (on Hausdorff  dimension, not on 
the transfer operators) of ref. 10 for some Julia sets. 

5. The Fisher models (~4) are soluble in the sense that their induced 
versions have only one-point interactions. Our formulation allows one to 
generalize these results to a large class of models that are no longer soluble 
in this sense, with induced versions having interaction of an infinite range, 
as is the case with statistical mechanics systems arising from smooth maps 
of the interval. The modified transfer operator  - ~ z  can be considered as an 
operator version of the grand canonical ensemble. For  Fisher models, .~r 
reduces to multiplication by the grand partition function of a single cluster 
as in ref. 32. 
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